Cargo Bay: Difference between revisions

From ΔV: Wiki
(added more images. some still need adding but will do later)
(further added images. 5 ships need completion for the set to be finished)
Line 99: Line 99:
|[[File:EIME baffles.png]]
|[[File:EIME baffles.png]]
|[[File:EIME baffles open.png]]
|[[File:EIME baffles open.png]]
|
|Unique hold and excavator layouts take a fixed barrier in place of baffles
|}
|}


Line 276: Line 276:
|-
|-
|OCP-209
|OCP-209
|[[File:OCP Nakamura.png|thumb]]
|[[File:OCP_Nakamura.png]]
|
|
|
|
Line 342: Line 342:
|-
|-
|K37
|K37
|
|[[File:K37 MSU.png]]
|
|
|
|
|-
|-
|KR37
|KR37
|
|[[File:KR37 MSU.png]]
|
|
|
|
|-
|-
|KTA24
|KTA24
|
|[[File:KTA24 MSU.png]]
|
|
|
|
|-
|-
|KX37
|KX37
|
|[[File:KX37 MSU.png]]
|
|
|
|
|-
|-
|K44
|K44
|
|[[File:K44 MSU.png]]
|
|
|
|
Line 382: Line 382:
|-
|-
|OCP-209
|OCP-209
|
|[[File:OCP MSU.png]]
|
|
|
|
|-
|-
|AT-K225
|AT-K225
|
|[[File:K225 MSU.png]]
|
|
|Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
|Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
|-
|-
|AT-K225-BB
|AT-K225-BB
|
|[[File:K225-BB MSU.png]]
|
|
|
|
Line 402: Line 402:
|-
|-
|Pelican Prospector
|Pelican Prospector
|
|[[File:Pelican MSU.png]]
|
|
|
|
|-
|-
|Vulture Prospector
|Vulture Prospector
|
|[[File:Vulture MSU.png]]
|
|
|
|
Line 453: Line 453:
|-
|-
|K37
|K37
|
|[[File:K37 RSLS.png]]
|
|
|
|
|-
|-
|KR37
|KR37
|
|[[File:KR37 RSLS.png]]
|
|
|
|
|-
|-
|KTA24
|KTA24
|
|[[File:KTA24 RSLS.png]]
|
|
|
|
|-
|-
|KX37
|KX37
|
|[[File:KX37 RSLS.png]]
|
|
|
|
|-
|-
|K44
|K44
|
|[[File:K44 RSLS.png]]
|
|
|
|
Line 493: Line 493:
|-
|-
|OCP-209
|OCP-209
|
|[[File:OCP RSLS.png]]
|
|
|
|
|-
|-
|AT-K225
|AT-K225
|
|[[File:K225 RSLS.png]]
|
|
|Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
|Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
|-
|-
|AT-K225-BB
|AT-K225-BB
|
|[[File:K225-BB RSLS.png]]
|
|
|
|
Line 513: Line 513:
|-
|-
|Pelican Prospector
|Pelican Prospector
|
|[[File:Pelican RSLS.png]]
|
|
|
|
|-
|-
|Vulture Prospector
|Vulture Prospector
|
|[[File:Vulture RSLS.png]]
|
|
|
|
Line 528: Line 528:
|-
|-
|Elon Interstellar Model E
|Elon Interstellar Model E
|
|[[File:EIME RSLS.png]]
|
|[[File:EIME RSLS open.png]]
|
|
|}
|}
[[Category:Equipment]]
[[Category:Equipment]]

Revision as of 01:02, 10 September 2024

There are a number of modifications that can be installed in the Cargo Bay, one being a convenience feature, and four being material processing units (hereby referred by their acronym, MPUs). MPUs process ore chunks into a powdered form. allowing them to be stored internally as processed ore, removing their volume from the cargo bay, but at the cost of not converting the chunk into powder with the 100% efficiency of Enceladus. Most MPU models also provide remass recovery, allowing part of the water content of an ore chunk to be put into the propellant tank of the ship.

MPUs will not process anything that isn't an ore chunk or ringroid that enters the bay, regardless of their volatility or mineral content (lifepods, dead bodies, spent mass driver rounds, serenity torbernite crystals, etc.)

The galleries for the MPUs will have the roughly-approximate processing areas marked in red. Any ore chunks in these areas will be processed.

Cargo bay baffles

Price: 2,000 E$

Mass: 400 kg

These spring-mounted cargo bay baffles prevent accidental loss of cargo during deceleration.

Springed baffles open inwards only, but may be held open by objects when the bay is very full. Some of the very wide or odd excavator designs host a solid barrier instead of baffles.

User Manual

These spring-mounted cargo bay baffles prevent accidental loss of cargo during deceleration.

Gallery

Baffled Cargo Bays
Ship Baffles Baffles (alt) Notes
K37 K37 baffles.png
KR37 KR37 baffles.png
KTA24 KTA24 baffles.png
KX37 KX37 baffles.png
K44 K44 baffles.png
Kitsune Kitsune baffles extended.png Kitsune baffles retracted.png
Cothon-212 Cothon-212 baffles.png Same shape in the Cothon-213 and Cothon-217 due to identical cargo bay layouts.
Cothon-211 Cothon-211 baffles.png
OCP-209 OCP baffles.png Unique hold and excavator layouts take a fixed barrier in place of baffles
AT-K225 K225 baffles.png Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
AT-K225-BB K225-BB baffles.png
Eagle Prospector Eagle baffles.png Same shape in the Peacock Prospector due to identical cargo bay layout.
Pelican Prospector Pelican baffles.png
Vulture Prospector Vulture baffles.png
Bald Eagle Bald baffles.png
Elon Interstellar Model E EIME baffles.png EIME baffles open.png Unique hold and excavator layouts take a fixed barrier in place of baffles

Rusatom-Antonoff MPU

Price: 350,000 E$

Processing capacity: 20 kg/s
Power draw: 2 MW / chunk
Mineral processing efficiency: 40%
Remass processing efficiency: 40%
Mass: 1,700 kg
Manufacturer: Rusatom-Antonoff

The Rusatom-Antonoff Mineral Processing Unit uses reactor heat to sublimate water content out of a large cargo volume, so that mineral content can be collected and stored. Evaporated water is collected via a cryo-ring, and can be reprocessed into propellant. This MPU boasts minimal power consumption and excellent processing reach, but the heating process is inefficient, and much of the cargo and water is lost during processing.

User Manual

Converts ore chunks into processed ore.
Replenishes propellant.
Requires ore to be in the processing chamber.
Processes multiple ore chunks simultaneously.
Power requirements and processing speed listed per chunk.
Processed ore stored in separate containers, with capacity limited per mineral type.

Gallery

RA MPU
Ship RA MPU RA MPU (alt) Notes
K37 K37 RA.png
KR37 KR37 RA.png
KTA24 KTA24 RA.png
KX37 KX37 RA.png
K44 K44 RA.png
Kitsune Kitsune RA extended.png Kitsune RA retracted.png
Cothon-212 Cothon-212 RA.png Same shape in the Cothon-213 and Cothon-217 due to identical cargo bay layouts.
Cothon-211 Cothon-211 RA.png
OCP-209 OCP RA.png Wide bay makes majority of the huge cargo hold accessible to the MPU
AT-K225 K225 RA.png Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
AT-K225-BB K225-BB RA.png
Eagle Prospector Eagle RA.png Same shape in the Peacock Prospector due to identical cargo bay layout.
Pelican Prospector Pelican RA.png
Vulture Prospector Vulture RA.png
Bald Eagle Bald RA.png
Elon Interstellar Model E EIME RA.png EIME RA open.png

Nakamura MPU

Price: 500,000 E$

Processing capacity: 50 kg/s
Power draw: 25 MW / chunk
Mineral processing efficiency: 70%
Remass processing efficiency: 30%
Mass: 4,200 kg
Manufacturer: Nakamura Dynamics

Nakamura Dynamics' Mineral Processing Unit uses microwaves to sublimate the ice out of cargo and stores it in compact containers. Evaporated water is collected via a cryo-ring, and can be reprocessed into propellant.

User Manual

Converts ore chunks into processed ore.
Replenishes propellant.
Requires ore to be in the processing chamber.
Processes multiple ore chunks simultaneously.
Power requirements and processing speed listed per chunk.
Processed ore stored in separate containers, with capacity limited per mineral type.

Gallery

Nakamura MPU
Ship Nakamura MPU Nakamura MPU (alt) Notes
K37 K37 Nakamura.png
KR37 KR37 Nakamura.png
KTA24 KTA24 Nakamura.png
KX37 KX37 Nakamura.png
K44 K44 Nakamura.png
Kitsune Kitsune Nakamura extended.png Kitsune Nakamura retracted.png
Cothon-212 Cothon-212 Nakamura.png Same shape in the Cothon-213 and Cothon-217 due to identical cargo bay layouts.
Cothon-211 Cothon-211 Nakamura.png
OCP-209 OCP Nakamura.png
AT-K225 K225 Nakamura.png Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
AT-K225-BB K225-BB Nakamura.png
Eagle Prospector Eagle Nakamura.png Same shape in the Peacock Prospector due to identical cargo bay layout.
Pelican Prospector Pelican Nakamura.png
Vulture Prospector Vulture Nakamura.png
Bald Eagle Bald Nakamura.png
Elon Interstellar Model E EIME Nakamura.png EIME Nakamura open.png

Mitsudaya-Starbus MSU

Price: 900,000 E$

Processing capacity: 100 kg/s
Power draw: 150 MW / chunk
Mineral processing efficiency: 90%
Remass processing efficiency: n/a
Mass: 2,500 kg
Manufacturer: Mitsudaya-Starbus

The Mitsudaya-Starbus Mineral Smelting Unit is made for efficient mineral processing, regardless of the energy cost. It uses a combination of laser-cutting and directed microwave beams to efficiently disassemble any mineral chunk. Remass recovery is not available in this unit.

User Manual

Converts ore chunks into processed ore.
Requires ore to be in the processing chamber.
Processes multiple ore chunks simultaneously.
Power requirements and processing speed listed per chunk.
Processed ore stored in separate containers, with capacity limited per mineral type.

Gallery

MS MSU
Ship MS MSU MS MSU (alt) Notes
K37 K37 MSU.png
KR37 KR37 MSU.png
KTA24 KTA24 MSU.png
KX37 KX37 MSU.png
K44 K44 MSU.png
Kitsune Kitsune MSU extended.png Kitsune MSU retracted.png
Cothon-212 Same shape in the Cothon-213 and Cothon-217 due to identical cargo bay layouts.
Cothon-211
OCP-209 OCP MSU.png
AT-K225 K225 MSU.png Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
AT-K225-BB K225-BB MSU.png
Eagle Prospector Same shape in the Peacock Prospector due to identical cargo bay layout.
Pelican Prospector Pelican MSU.png
Vulture Prospector Vulture MSU.png
Bald Eagle
Elon Interstellar Model E

Voyager RSLS Fabrication Plant

Price: 1,500,000 E$

Processing capacity: 40 kg/s
Power draw: 20 MW / chunk
Print power draw: 70 MW
Printing capability: drones, ammunition
Mineral processing efficiency: 50%
Remass processing efficiency: 60%
Mass: 6,000 kg
Manufacturer: Nakamura-Obonto

Designed for long range research vessels, the Voyager fabricator sacrifices cargo space to fit a fabricator inside the cargo bay, with a series of cryo-rings providing excellent propellant reclamation. This combined Mineral Processing / Rapid Selective Laser Sintering Unit by Nakamura Dynamics and Obonto Micro Engineering can resupply vanadium-hardened iron ammunition, or disposable nanodrones that use a platinum mirror array in an iron frame.

User Manual

Converts ore chunks into processed ore.
Replenishes propellant.
Requires ore to be in the processing chamber.
Processes multiple ore chunks simultaneously.
Power requirements and processing speed listed per chunk.
Processed ore stored in separate containers, with capacity limited per mineral type.
Produces kinetic ammunition from a 9:1 ratio of iron to vanadium.
Produces nanodrone components from a 4:1 ratio of iron to platinum.

Gallery

Voyager RSLS MPU
Ship Voyager RSLS MPU Voyager RSLS MPU (alt) Notes
K37 K37 RSLS.png
KR37 KR37 RSLS.png
KTA24 KTA24 RSLS.png
KX37 KX37 RSLS.png
K44 K44 RSLS.png
Kitsune Kitsune RSLS extended.png Kitsune RSLS retracted.png
Cothon-212 Same shape in the Cothon-213 and Cothon-217 due to identical cargo bay layouts.
Cothon-211
OCP-209 OCP RSLS.png
AT-K225 K225 RSLS.png Same shape in the AT-K225 (modified) due to an identical cargo bay layout.
AT-K225-BB K225-BB RSLS.png
Eagle Prospector Same shape in the Peacock Prospector due to identical cargo bay layout.
Pelican Prospector Pelican RSLS.png
Vulture Prospector Vulture RSLS.png
Bald Eagle
Elon Interstellar Model E EIME RSLS.png EIME RSLS open.png